国内首次!这家中国企业的语言AI实力被公认全球No.2!仅次于谷歌

AI资讯1年前 (2023)发布 AI工具箱
495 0 0

AI成精,“逼疯”程序员;AI做高数,成绩超过博士;AI写代码,成功调教智能体……

看多了这种故事,你是不是也觉得,AI太卷了,要上天了。

今天回归本源,讲点不那么玄幻的。AI为什么会进化?底层其实没有秘密,无非是语言、视觉等几大基本功。

其中,语言能力对AI的智能水平有决定性影响。视觉研究怎么“看”,语言研究“听”、“说”和“理解”。

对人类来说,“听”、“说”、“理解”相加,基本等于思维能力,对AI,道理也差不多。

最近,咨询机构Gartner发布《云AI开发者服务关键能力报告》,对全球云服务商的AI能力做了排行。

语言AI这一项,第一名毫不意外是谷歌

第二名比较惊喜,是阿里巴巴。这是榜单发布以来,中国公司在该领域第一次进入全球前三。

全球前十中,中国的BAT占了三席,成绩可谓是瞩目。

语言AI,包含语音、语义两个大类。

语音负责让机器学会“听”和“说”;语义,也就是自然语言处理(NLP),负责让机器学会“理解”。

先来看看Gartner报告对语音语义的评判标准

Gartner将每种功能的程度分为5个等级,分别对应1-5分,分数越高则表明实力越强。

阿里云上的AI能力,主要包括:

阿里在语音识别自然语言生成/语音合成语言理解/处理文本分析这几项关键能力都获得了最高分。

报告对每个细分项赋予权重,结合单项得分和项目权重计算总分,最终谷歌的语言AI以3.55的总分排名第一;阿里得分3.48,排名第二。

但除此之外更为细节的能力,Gartner的报告并未详细描述。

还是跟着Gartner报告,把“语言AI”一拆为二,看看什么是语音,什么是语义。

首先是语音层面的AI技术。

语音的应用,我们并不陌生,苹果Siri、微软小冰等AI助手,都是通过赋予机器语音能力,从而与人类产生交互。

每一个语音产品,背后都有一套语音技术软硬件作支撑。

阿里云所依托的,是达摩院在语音AI领域的深厚积累。

达摩院在语音AI领域最早以语音识别技术起家,技术能力涵盖语音识别声学模型和基础框架、说话人区分、语音合成声学模型和声码器、口语语言处理、联合优化的声学前端等。

2019年,阿里语音AI曾被MIT评选为当年度的“十大突破技术”,这背后的技术能力,就来自于达摩院。

以Gartner报告评估过的Speech to text、也就是我们常说的“语音识别”技术为例。

达摩院的语音AI,在常规的近场语音识别、远场语音场景、多人交谈“鸡尾酒会场景”语音识别技能之外,还有一些别致的长尾技能,比如“中英自由说”、“方言自由说”。

举个栗子,中英文混说——“借你的iPad给我看下paper”,这句话机器如何理解呢?

业界通行的端到端语音识别 (End-to-End ASR) 技术,在单语种任务上效果很好,但一切换到多语种混说 (Code-Switch)场景下,还是不太理想。

针对这类问题问题,达摩院语音实验室借鉴混合专家系统(Mixture of Experts)的思想。

在端到端语音识别模型中,对中文和英文分别设计了一个子网络,最后通过门控模块对每个子网络的输出进行加权。

为了减少模型参数量,中、英文子网络采用底层共享,高层独立的方式。最终使模型在中文、英文、中英文混说场景下都能取得比较好的效果。

在此基础上,达摩院融合了其自研的端到端语音识别技术SAN-M网络结构,打造出新一代的端到端中英自由说语音识别系统。

最后的效果就是:阿里的语音AI能在没有语种信息的前提下,大幅提升中英文混说场景下的识别性能。

借鉴这套模型搭建思路,达摩院又解锁了“方言自由说”技能,打造了一套端到端方言自由说语音识别系统。

在不需要提供方言id的情况下,用一个模型就能识别14种常用方言,并且保证纯中文相对于单语模型的识别性能基本不降。

达摩院的AI技术主要通过阿里云对外提供服务,以“被集成”方式,广泛应用于运营商、电商、物流、电力等多个行业。

除了语音AI技术之外,阿里在语义层面同样形成了一套强大的技术体系。

语言本身就是“音”和“义”的结合体——“听到”诚可贵,“听懂”价更高。

人类语言并不难,几岁孩童便可轻松掌握一门语言。但计算机有自己的编程语言,要它理解人类语言难如登天。

NLP技术的进化,是AI从感知智能向认知智能演进的前提。而在过去十几年内,NLP技术进化最具标志性的事件,就是大规模预训练语言模型的出现。

阿里达摩院是业界最早开展大模型探索的团队之一,2019年就开始研发大规模预训练语言模型体系AliceMind,并以此作为技术底座,开展对内对外的技术服务。

“前大模型时代”,NLP技术解决问题的方法,是为每个任务单独设计模型。模型开发往往很复杂,缺乏算力、数据、技术力量的中小团队往往难以负担。

预训练语言模型出现后,AI的整体智能比过去大幅提升,NLP技术的赋能方式也逐渐变成“预训练+微调”范式。

也就是以通用的预训练模型为基础,加入简单的任务层、结合少量场景语料,以较低成本训练出优质的任务模型。

达摩院的阿里的大规模预训练语言模型体系,拥有阅读、写作、翻译、问答、搜索、摘要生成、对话等多种能力。

大模型通常并不直接用于解决应用问题,而是通过与具体任务、应用场景的结合,逐层孵化“中模型”、“小模型”。

在大模型体系基础上,达摩院语言技术实验室先后孵化了一系列“中模型”,包括:

  • 通用预训练模型StructBERT
  • 生成式预训练模型PALM
  • 多语言预训练模型VECO
  • 超大中文预训练模型PLUG
  • 多模态预训练模型mPLUG
  • 结构化预训练模型StructuralLM
  • 预训练对话模型SPACE
  • 表格预训练模型STAR等

这些模型各有专长,StructBERT、mPLUG和StructuralLM具备挖掘文本、图像、表格“结构”信息的能力,单语言生成模型PALM、多语言生成模型VECO、超大中文预训练模型PLUG都为语言生成任务(NLG)而生。

例如StructBERT,是达摩院在谷歌BERT模型基础之上所提出的优化模型,它可以让机器更好地掌握人类的语法、理解自然的语言。

StructBERT一经推出,便在当时GLUE基准上取得了SOTA(89.0分),并且还将SQuAD v1.1问题回答上的F1得分推至93.0的新高度。

再如多语言预训练模型VECO,曾拿下国际权威多语言榜单XTREME排名第一,成绩远超Meta和微软等国际巨头的模型。

多模态预训练模型mPLUG在视觉问答(VQA)任务上首次超过人类结果。对话预训练模型SPACE在10多个对话国际榜单和数据集上取得SOTA。

基于AliceMind技术,达摩院先后斩获了35个冠军,在某些领域的水平已经非常接近人类对语言理解的程度了。并且,该技术已面向全球开发者开源。

众所周知,大规模预训练模型开发成本极高,玩家通常集中于头部科技企业,但新的模型赋能范式,使得更多中小团队、个人开发者也能分享大模型的红利。

……

据了解,目前阿里达摩院语音语义领域的研究已有300百多篇论文被国际顶会收录,相关研究已应用于医疗、电力、电商等领域。

此前,IDC发布《2021H2中国AI云服务市场研究报告》中,阿里在语音和语义市场上的份额便取得了第一的成绩。

在人工智能发展长河中,语音语义是最早起步的技术之一,也是人工智能的基石。

语音技术最早可以追溯到1952年,贝尔实验室的Davis等人研制出了世界上第一个能识别10个英文数字发音的实验系统Audry,从此拉开了语音识别发展的序幕。

语义技术更是可以追溯到1947年,当时英美科学家联手提出了利用计算机进行语言自动翻译的设想,机器翻译的诞生也正意味着打开了语义发展的大门。

于是,让机器“听到”、“听懂”人类语言这件事,便在那段时间起,成为了学界和产业界争相发展的技术高地。

各界的纷纷投入,也让工业界诞生了众多“史诗级”的产品,例如苹果在2011年发布的Siri,以及后来亚马逊、谷歌、微软等推出的Alexa、Google Assistant、Cortana等。

另一方面,这背后的技术也产生了革命性的迭代变迁,例如近几年Transformer、Bert等技术的爆发,极大地推动了语音语义技术的发展。

在这种大趋势的背后,更重要的意义在于语音语义已然是普通人“唾手可用”的技术。

以阿里为例,达摩院的机器翻译技术每天为国内200万中小商家翻译上亿文字 ,让不懂英语和小语种的商家也能把国货卖到全世界。

这样的技术还已应用到了“买票”场景。

去年年中,北京首都机场和大兴机场均开通了语音购票的服务,只需要乘客张张嘴说出目的地,便可以在1.6秒内快速完成选站。

事实上,未来任何硬件终端都可以集成语言AI技术,这样的应用空间是巨大的,这也正是国内外学者、科技巨头纷纷发力于此的原因。

就像中国计算机学会副理事长、澜舟科技创始人兼CEO周明所评价的那般:

也正如Gartner在此次报告中所述:

但纵观语音语义的发展,有一点是始终未曾变化的,那就是它的理想目标——和机器对话,像在跟人类交流

前不久谷歌研究员爆料“AI具备人格”的事件在科技圈引发了热议,虽然后来谷歌对其已经进行了辟谣,但其背后无法掩盖的事实是AI正在逐渐向人类逼近。

那么在未来,语音语义技术又将如何颠覆人们的生活,是值得期待了。

© 版权声明

相关文章

暂无评论

暂无评论...